The Indian Premier League played by teams representing different cities in India from 2008 to 2016.
cricket
A tibble with 8560 rows and 11 variables.
years representing IPL season
match codes
name of batting team
name of bowling team
innings of the match
overs of the inning
number of wickets in each over
number of balls with no runs in an over
Runs for each over
run rate for each over
https://www.kaggle.com/josephgpinto/ipl-data-analysis/data
data(cricket) library(tsibble) library(dplyr) library(ggplot2) # convert data set to a tsibble ---- cricket_tsibble <- cricket %>% mutate(data_index = row_number()) %>% as_tsibble(index = data_index) # set the hierarchy of the units in a table ---- hierarchy_model <- tibble::tibble( units = c("index", "over", "inning", "match"), convert_fct = c(1, 20, 2, 1) ) # Compute granularities ---- cricket_tsibble %>% create_gran("over_inning", hierarchy_model)#> # A tsibble: 8,560 x 12 [1] #> season match_id batting_team bowling_team inning over wicket dot_balls #> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 2008 2 Chennai Sup… Kings XI Pu… 1 1 0 4 #> 2 2008 2 Chennai Sup… Kings XI Pu… 1 2 0 2 #> 3 2008 2 Chennai Sup… Kings XI Pu… 1 3 1 4 #> 4 2008 2 Chennai Sup… Kings XI Pu… 1 4 0 3 #> 5 2008 2 Chennai Sup… Kings XI Pu… 1 5 0 3 #> 6 2008 2 Chennai Sup… Kings XI Pu… 1 6 0 3 #> 7 2008 2 Chennai Sup… Kings XI Pu… 1 7 1 1 #> 8 2008 2 Chennai Sup… Kings XI Pu… 1 8 1 3 #> 9 2008 2 Chennai Sup… Kings XI Pu… 1 9 0 1 #> 10 2008 2 Chennai Sup… Kings XI Pu… 1 10 0 2 #> # … with 8,550 more rows, and 4 more variables: runs_per_over <dbl>, #> # run_rate <dbl>, data_index <int>, over_inning <fct># Visualise distribution of runs across granularities ---- cricket_tsibble %>% filter(batting_team %in% c("Mumbai Indians", "Chennai Super Kings"))%>% prob_plot("inning", "over", hierarchy_model, response = "runs_per_over", plot_type = "lv")#>#>